Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MicroRNAs expression patterns in the response of poplar woody root to bending stress.

Identifieur interne : 001C49 ( Main/Exploration ); précédent : 001C48; suivant : 001C50

MicroRNAs expression patterns in the response of poplar woody root to bending stress.

Auteurs : Miriam Rossi [Italie] ; Dalila Trupiano ; Manuela Tamburro ; Giancarlo Ripabelli ; Antonio Montagnoli ; Donato Chiatante ; Gabriella S. Scippa

Source :

RBID : pubmed:25963516

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.


DOI: 10.1007/s00425-015-2311-7
PubMed: 25963516


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MicroRNAs expression patterns in the response of poplar woody root to bending stress.</title>
<author>
<name sortKey="Rossi, Miriam" sort="Rossi, Miriam" uniqKey="Rossi M" first="Miriam" last="Rossi">Miriam Rossi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS)</wicri:regionArea>
<wicri:noRegion>Pesche (IS)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
</author>
<author>
<name sortKey="Tamburro, Manuela" sort="Tamburro, Manuela" uniqKey="Tamburro M" first="Manuela" last="Tamburro">Manuela Tamburro</name>
</author>
<author>
<name sortKey="Ripabelli, Giancarlo" sort="Ripabelli, Giancarlo" uniqKey="Ripabelli G" first="Giancarlo" last="Ripabelli">Giancarlo Ripabelli</name>
</author>
<author>
<name sortKey="Montagnoli, Antonio" sort="Montagnoli, Antonio" uniqKey="Montagnoli A" first="Antonio" last="Montagnoli">Antonio Montagnoli</name>
</author>
<author>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
</author>
<author>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25963516</idno>
<idno type="pmid">25963516</idno>
<idno type="doi">10.1007/s00425-015-2311-7</idno>
<idno type="wicri:Area/Main/Corpus">001C96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C96</idno>
<idno type="wicri:Area/Main/Curation">001C96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C96</idno>
<idno type="wicri:Area/Main/Exploration">001C96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MicroRNAs expression patterns in the response of poplar woody root to bending stress.</title>
<author>
<name sortKey="Rossi, Miriam" sort="Rossi, Miriam" uniqKey="Rossi M" first="Miriam" last="Rossi">Miriam Rossi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS)</wicri:regionArea>
<wicri:noRegion>Pesche (IS)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
</author>
<author>
<name sortKey="Tamburro, Manuela" sort="Tamburro, Manuela" uniqKey="Tamburro M" first="Manuela" last="Tamburro">Manuela Tamburro</name>
</author>
<author>
<name sortKey="Ripabelli, Giancarlo" sort="Ripabelli, Giancarlo" uniqKey="Ripabelli G" first="Giancarlo" last="Ripabelli">Giancarlo Ripabelli</name>
</author>
<author>
<name sortKey="Montagnoli, Antonio" sort="Montagnoli, Antonio" uniqKey="Montagnoli A" first="Antonio" last="Montagnoli">Antonio Montagnoli</name>
</author>
<author>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
</author>
<author>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Biomechanical Phenomena (drug effects)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Growth Regulators (pharmacology)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Stress, Physiological (genetics)</term>
<term>Wood (genetics)</term>
<term>Wood (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bois (génétique)</term>
<term>Bois (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur de croissance végétal (pharmacologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Phénomènes biomécaniques (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (physiologie)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phénomènes biomécaniques</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
<term>Stress, Physiological</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Bois</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Régions promotrices (génétique)</term>
<term>Stress physiologique</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Facteur de croissance végétal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25963516</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>MicroRNAs expression patterns in the response of poplar woody root to bending stress.</ArticleTitle>
<Pagination>
<MedlinePgn>339-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-015-2311-7</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">The paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18-24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rossi</LastName>
<ForeName>Miriam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Bioscienze e Territorio, University of Molise, C.da Fonte Lappone, 86090, Pesche (IS), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trupiano</LastName>
<ForeName>Dalila</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamburro</LastName>
<ForeName>Manuela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ripabelli</LastName>
<ForeName>Giancarlo</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montagnoli</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiatante</LastName>
<ForeName>Donato</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scippa</LastName>
<ForeName>Gabriella S</ForeName>
<Initials>GS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25963516</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-015-2311-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 01;14:267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25269469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14 ):5984-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 20;297(5589):2053-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Nov;7(6):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):681-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 03;12:132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22862743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(6):903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Mar;3(3):e85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Jul;110(2):415-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Dec;160(4):1996-2006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(6):867-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 May 26;101(5):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Feb 13;421(6924):740-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(3):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18069942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Sep;146(1):39-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22339039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Apr 29;13(9):784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 4;455(7209):64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Aug;238(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23645259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Sep 23;10:449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1855-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44968</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Aug;26(8):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3132-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Feb;150(2):174-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23683290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17437028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Dec 15;166(18):2046-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1964-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 Nov;10(4):493-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 May;227(6):1409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14 (10 ):2339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Aug 9;86(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chiatante, Donato" sort="Chiatante, Donato" uniqKey="Chiatante D" first="Donato" last="Chiatante">Donato Chiatante</name>
<name sortKey="Montagnoli, Antonio" sort="Montagnoli, Antonio" uniqKey="Montagnoli A" first="Antonio" last="Montagnoli">Antonio Montagnoli</name>
<name sortKey="Ripabelli, Giancarlo" sort="Ripabelli, Giancarlo" uniqKey="Ripabelli G" first="Giancarlo" last="Ripabelli">Giancarlo Ripabelli</name>
<name sortKey="Scippa, Gabriella S" sort="Scippa, Gabriella S" uniqKey="Scippa G" first="Gabriella S" last="Scippa">Gabriella S. Scippa</name>
<name sortKey="Tamburro, Manuela" sort="Tamburro, Manuela" uniqKey="Tamburro M" first="Manuela" last="Tamburro">Manuela Tamburro</name>
<name sortKey="Trupiano, Dalila" sort="Trupiano, Dalila" uniqKey="Trupiano D" first="Dalila" last="Trupiano">Dalila Trupiano</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Rossi, Miriam" sort="Rossi, Miriam" uniqKey="Rossi M" first="Miriam" last="Rossi">Miriam Rossi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25963516
   |texte=   MicroRNAs expression patterns in the response of poplar woody root to bending stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25963516" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020